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Abstract

For several years, the NASA SIMBIOS Project has collected, processed, and archived optical aerosol data from shipboard sun

photometers. The calibration, processing, quality control, and archival methodology for handheld sun photometers are described here,

along with their deployment statistics. Data processing has been standardized for all instruments by using identical calibration methods,

ancillary data, and processing software. Statistical analysis reveals a dataset influenced by its temporal and geographic distribution, while

multimodal histograms for aerosol optical thickness (AOT) and 2ngstrfm exponent reveal varied aerosol populations. A K-means

unsupervised classification technique is used to separate these populations. This separation is validated by showing individual classes are

more likely to be log-normally (for AOTs) or normally (for 2ngstrfm exponents) distributed than the dataset as a whole. Properties for

each class are presented, along with the characteristics of each class by regional oceanic basin. Results also compare favorably with

maritime aerosols measured by land-based AERONET Cimels in island sites, while providing data coverage in previously sparsely sampled

regions. Aerosol models employed by SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) also compare favorably with these ground

based measurements.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Since 1997, the NASA Sensor Inter-comparison and

Merger for Biological and Interdisciplinary Oceanic

Studies (SIMBIOS) Project Office has maintained and

deployed a pool of sun photometers for use in maritime

regions. The SIMBIOS Project calibrates and maintains
0034-4257/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2004.06.018

* Corresponding author. NASA Goddard Space Flight Center, Uni-

versity of Maryland Baltimore, Code 970.2, Greenbelt, MD 20771, United

States. Tel.: +1 301 286 6421; fax: +1 301 286 0268.

E-mail addresses: kirk@simbios.gsfc.nasa.gov (K.D. Knobelspiesse)8

wang@simbios.gsfc.nasa.gov (M. Wang).
these instruments, while SIMBIOS Principal Investigators

(PIs), at a number of institutions, deploy them on research

cruises. Some SIMBIOS PIs also deploy their own instru-

ments. The SIMBIOS Project then processes these data,

performs quality control (QC), and archives the final result

in the SeaWiFS Bio-Optical Archive and Storage System

(SeaBASS) (Werdel and Bailey, 2002). SeaWiFS is Sea-

Viewing Wide Field-of-View Sensor.

This paper is intended to be a macroscopic analysis of the

entire dataset from two types of handheld sun photometers,

each with five bands at visible and near-infrared (NIR)

wavelengths. Data products from these instrument designs

include aerosol optical thickness (AOT) at each wavelength
ent 93 (2004) 87–106
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and the2ngstrfm exponent computed from the AOTspectra.

The nature of these handheld instruments is such that sky

almucanters (a scan of sky radiance measurements made at

the same zenith angle as the sun but varying azimuth angles),

and thus aerosol particle size distributions, cannot be

computed as it is for automated Cimel sun photometers

deployed by the NASA Aerosol Robotic Network (AERO-

NET) (Holben et al., 1998). However, our data can compli-
Fig. 1. Map of handheld sun photometer data locations. Part A shows the entire

respectively.
ment AERONET by sampling in previously inaccessible

maritime regions. Calibration for the SIMBIOS Instrument

Pool is achieved by comparing concurrent measurements

between SIMBIOS and AERONET instruments at the

AERONET rooftop facility at NASA’s Goddard Space Flight

Center in Greenbelt, MD.

The primary objective of the SIMBIOS Instrument Pool is

to provide data for validation of aerosol products from
globe, while parts B and C show details in North America and East Asia,
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SeaWiFS and other ocean color remote sensing satellites.

The optical effect of aerosols upon the atmospheric

correction of ocean color instruments is significant (Gordon

& Wang, 1994). Comparisons of remotely sensed surface

AOT from the SIMBIOS Instrument Pool to SeaWiFS AOT

(a by-product of the atmospheric correction algorithm,

Wang, 2000) can show the strengths and weaknesses of

SeaWiFS atmospheric correction. This is particularly useful

considering the volume of in situ bio-optical data gathered

concurrently with aerosol data, providing the opportunity to

validate other SeaWiFS (or other ocean color satellite) data

products.

Surface measurements of column AOTcan also be used to

evaluate and refine aerosol models (Shettle & Fenn, 1979;

Gordon&Wang, 1994) used in atmospheric correction. To do

this, however, we must reduce the effects of data distribution

upon dataset analysis. The SIMBIOS Instrument Pool was

deployed on a variety of research cruises throughout the

world’s oceans. Heavily sampled regions include both East

and West coasts of the United States and the Sea of Japan, as

shown in Fig. 1. Data distribution is highly irregular, both

temporally and geographically, so classification routines are

utilized to split the data into groups of similar characteristics

prior to analysis. This has paved the way to a proper

comparison with data from AERONET and to SeaWiFS

aerosol models.
Table 1

Center wavelength

Instrument Band center wavelength (nm)

SIMBAD 443 490 560 670 870

Microtops II 440 500 675 870 940a

a The 940-nm band is used for water vapor measurements and excluded

from this study.
2. Background

The SIMBIOS Instrument Pool contains several types

of sun photometers, two of which form the basis of this

study. The Microtops II Sun Photometer, commercially

manufactured by Solar Light, is a five-channel, handheld,

sun photometer whose collimated radiometers are pointed

at the sun with the aid of a targeting device. The

Microtops II Field of View (FOV) is 2.5 at full-width half

maximum (FWHM), intended to be large enough to

facilitate sun pointing without allowing significant sky-

light into the collimators (Morys et al., 2001). The

SIMBIOS Project owns 14 Microtops II’s, which are

deployed with external Global Positioning Satellite (GPS)

units. The Simbad Radiometer is designed and manufac-

tured by the Laboratorie d’Optique Atmospherique of the

University of Lille, France. Like the Microtops II, the

Simbad has five collimated radiometers and is pointed at

the sun with the aid of a targeting device. It has a slightly

larger FOV of 3.08 at FWHM and a built-in GPS unit.

The Simbad also operates as an above water radiometer. It

has two gain settings: a high gain for water radiometry

and low gain for sun photometry. Simbad filters are also

polarized to reduce the effect of surface reflection on

measurements of water leaving radiance (Deschamps et

al., 2004).

Both instruments are small, easy to use, and ideal

for deployment in difficult situations like a ship at sea.
Ion deposition filters are used to provide stable bands

with a width of about 10 nm. Table 1 shows the

nominal center wavelengths of each sun photometer

band. The Microtops II 940-nm band is intended for

measurements of column integrated water vapor (WVC).

SIMBIOS Project requirements do not include measure-

ments of WVC, which need a more complicated

instrument calibration (Ichoku et al., 2002). Therefore,

AOT at 940 nm and WVC data are excluded from this

study.

The Microtops II and Simbad sun photometers record

data in internal memory, which are later downloaded by the

PI to a text file that is forwarded to the SIMBIOS Project.

Data are then processed and submitted to the SeaBASS

database.

2.1. Sun photometry

The SIMBIOS Project uses handheld sun photo-

meters because of their low cost, ease of calibration

and operation, field hardiness, and ability of overcome

difficulties associated with making optical measurements

from a ship at sea. Handheld sun photometers are pointed

at the sun to measure the spectral extinction of the direct

solar radiation. This is expressed in the Beer–Lambert–

Bouguer Law:

V kð Þ ¼ Vo kð Þ do

d

� �2

e �mst kð ÞÞð ð1Þ

where:

st kð Þ ¼ sa kð Þ þ sR kð Þ þ sg kð Þ ð2Þ

Direct solar radiation is measured through filter bands with

center wavelengths of k and in terms ofV, voltage. This signal

is a function of the instrument’s exo-atmospheric voltage,

Vo, which expresses instrument calibration, do the average

earth–sun distance, d the earth–sun distance on the day of

observation, m the solar zenith angle-dependent airmass,

and st the total atmospheric optical depth. st is the sum of

the aerosol optical depth sa (AOT), the optical depth due

to Rayleigh scattering sR, and optical depth due to gaseous

absorption sg. In the visible to NIR wavelength range,

gaseous absorption, sg, is mainly due to ozone. Instrument

NIR wavelength sensitivity ranges were selected to avoid

strongly absorbing water vapor features.
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In our processing, do, d, and m are determined from

the location and date of a particular measurement. The

earth–sun distance ratio is calculated as (Iqbal, 1983):

do

d

� �2

¼ 1þ 0:034cos
2pJ
365

� �
ð3Þ

where J is the Julian day of year. Airmass, m, is calculated

according to Kasten and Young (1989):

m ¼ cosho þ 0:50572 96:07995 � hoð Þ�1:6364
� ��1

ð4Þ

where ho is the solar zenith angle. The same airmass

value is used for st, sR, and sg, although Porter et al.

(2001) and others suggest that m should be calculated

individually. The effect is minor, so individual compu-

tations of m are not performed by the SIMBIOS

Project.

sR is calculated using contemporary atmospheric pres-

sure values provided by the National Centers for Environ-

mental Prediction (NCEP). This relationship is:

sR kð Þ ¼ P

P0

kRay kð Þe� H
7998:9 ð5Þ

where kRay is defined as

kRay kð Þ ¼ 28773:597886�
�
1� 10�8

�
8342:13

þ 2406030

130� k�2
þ 15997

38:9� k�2

��2

�
�
1� 10�8

�
8342:13þ 2406030

130� k�2

þ 15997

38:9� k�2

�
þ 2

�2
� k�4 ð6Þ

In Eqs. (5) and (6), H is the altitude, in meters, above sea

level, P is the atmospheric pressure, in millibars, and P0 is

the standard atmospheric pressure, with a value of 1013.25

mbar. Note that all wavelengths, k, are in micrometers

(Fargion et al., 2001).

Gaseous optical thickness, sg, is calculated using

satellite observations of ozone. Preferably, ozone values

from the Total Ozone Mapping Spectrometer (TOMS) are

used. Data from the TIROS Operational Vertical Sounder

(TOVS) are used when TOMS data are not available. If

neither TOMS nor TOVS data exist for a particular time

and location, ozone climatologies are implemented.
Table 2

koz spectral dependence

Wavelength 440 443 490 500

koz 0.0034 0.0038 0.0223 0.03
Optical thickness is computed from ozone using the

relationship:

sg kð Þ ¼ koz kð Þ Z

1000
ð7Þ

Z is the quantity of ozone, in Dobson units, and koz is

the ozone absorption coefficient, shown in Table 2

(Nicolet, 1981; Komhyr et al., 1989).

Eq. (1), along with subsequent Eqs. (2)–(7) and ancillary

ozone and pressure values, is used to solve for sa(k) given
V(k). sa(k) values are therefore instrument-independent. In

addition, ancillary pressure and ozone data are identical to

those used in the SeaWiFS and many other ocean color

satellites, adding confidence to the SIMBIOS Instrument

Pool’s value as a validation tool.

2.2. Calibration

The cross calibration technique consists of making near

simultaneous direct solar measurements with two sun

photometers. One sun photometer is a master instrument

whose responsivity is well known. The second sun

photometer is an uncalibrated instrument that requires a

calibration transfer. A rooftop facility operated by the

AERONET group at Goddard Space Flight Center (GSFC)

is used to cross calibrate the sun photometers that compose

that project’s network of automatic instruments deployed

around the world (Holben et al., 1998). The same facility is

used to cross calibrate SIMBIOS sun photometers.

Master sun photometers are calibrated with the Langley

technique in high-altitude (3400 m) conditions at Mauna

Loa Observatory (MLO) by the AERONET group and then

deployed at GSFC. Master instruments are calibrated on a 3-

month cycle to ensure that one or two MLO calibrated

instruments are always operating on the rooftop facility.

AERONET master instruments have a spectrally dependent

(highest at shortest wavelengths) AOT uncertainty of

~0.002–0.009 (Eck et al., 1999).

Exo-atmospheric voltages from the uncalibrated sun

photometer are calculated relative to the ratio of the voltages

from the master sun photometer:

Vo kð Þ ¼ VoV kð ÞV kð Þ
VV kð Þ ð8Þ

where VoV(k) is the exo-atmospheric voltage for the master

sun photometer, and V(k) and VV(k) are the signals

measured by the uncalibrated and the master sun photo-

meters, respectively.
560 670 675 870

28 0.1044 0.0449 0.0414 0.0036
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Some instruments have slightly different band center

wavelengths than those in the master instrument. The closest

channel, kj, to the uncalibrated instrument band center, ki, is
used in calculations that are adjusted to account for

differences in Rayleigh scattering, ozone absorption and

the aerosol extinction:

Vo kið Þ ¼
VoV kj

� �
V kið Þ

VV kj
� �

" #
em/ ð9Þ

where m is the airmass and / is computed:

/ ¼ sR kið Þ � sR kj
� �

þ sg kið Þ � sg kj
� �

þ sa0
�
k�a
i � k�a

j

�
ð10Þ

sR is the Rayleigh optical thickness, sg is the ozone optical

thickness, sa0 is the aerosol optical thickness at 1 Am, and a
is the 2ngstrfm exponent from Section 2.4.1. Both sa0 and
a are from the master instrument, where sa0 is estimated by

extrapolating shorter wavelength values of s using a.
Exo-atmospheric voltages are calculated for pairs of

measurements between the uncalibrated and the master sun

photometers, usually taken within 30 s, though occasionally

a time difference of 60 s is used to increase the number of

matches. Only measurements for airmasses (m) less than 3

are used to avoid long atmospheric optical paths, which

increases the possibility of encountering variable aerosol

types. Computed exo-atmospheric voltages for the uncali-

brated instrument are then averaged and the variability is

checked. If the coefficient of variation is less than one

percent, cross calibration is deemed a success.

2.3. Data collection, protocols

The SIMBIOS Project has established a strict set of

protocols to ensure uniform and appropriate measurements

for all data (Fargon & MacClain, 2003; Fargion & Mueller,

2000, Mueller & Fargon, 2002a, 2002b; Mueller et al.,

2003a, 2003b, 2003c). PIs make measurements at each

cruise station (where the research ship stops to collect water

samples and other information) and during satellite overpass

of relevant ocean color sensors such as SeaWiFS (local noon

overpass). If time permits, additional measurements are

made while the ship is underway. To account for Microtops

II detector temperature-dependence, that instrument’s power

is cycled prior to each set of measurements. The Microtops

II records the dark current voltage when turned on, and this

value is subtracted from the instrument voltage, V(k), in
Eq. (1), thus removing the instrument’s temperature depend-

ence (Porter et al., 2001). The Simbad can make manual

measurements of the dark current, so it is left on

continuously to ensure the detectors remain stable.

Both instruments are used only when the sky is clear of

clouds at least 30 from the sun. Special attention must be

made to ensure that thin layers of cirrus clouds are not in the
optical path, as their cloud optical thickness can be confused

as AOT. Several subsequent measurements (typically about

15, over an interval of about 5 min) of AOT are taken at

each site, so that data stability can be analyzed, and used in

pointing error screening routines (see Section 2.3.1). While

at sea, optical surfaces are cleaned regularly to remove salt

and dust deposits. Finally, data are downloaded and

archived on a daily basis for redundancy.

2.3.1. Pointing error screening

Porter et al. (2001) noted that measurements from the

Microtops II sun photometer can be biased when used at

sea. This is due to the difficulty pointing the instrument at

the sun accurately, with the result of missing the full solar

signal. This causes a decrease in V(k) and an increase in

sa(k), often non-uniformly across bands. Both Microtops II

and Simbad instruments sample V(k) several times for each

data point, saving the highest, or average of the highest,

V(k) values to a file. For the Microtops II, this is not

sufficient for measurements taken in adverse sea conditions.

For that instrument, a second screening algorithm is applied

after the experiment to remove sun pointing errors. This

algorithm examines each set of measurements, and iter-

atively removes high sa(k) values until the coefficient of

variation (CoV) of the set falls beneath a threshold

(Knobelspiesse et al., 2003). The screening algorithm is

not used for the Simbad because that instrument has a higher

measurement frequency and an internal pointing error

screening algorithm that is successful at sea.

2.4. Uncertainty computation

An uncertainty analysis of SIMBIOS sun photometers

was recently performed, so individual values for AOT and

2ngstrfm exponent uncertainty are computed for each

measurement and archived with the rest of the data. The

Microtops II uncertainty calculation is done according to

Russell et al. (1993) and Eck et al.(1999), and is written:

dsa ¼
"

s
ym

m

� �2

þ dV0

mV0

� �2

þ yV

mV

� �2

þ ysR
sR

� �2

þ ysg
sg

� �2
#1=2

ð11Þ

where ysa is the one sigma AOT uncertainty, ym is the

airmass uncertainty, with a value of 0.001, yV0 is the

calibration coefficient uncertainty, with a value of 0.015

when V0 is computed by a cross-calibration with AERO-

NET instruments (see Section 2.2 and Eck et al., 1999), yV
is the instrument voltage uncertainty, at 0.01, ysR is the

uncertainty of the Rayleigh optical thickness, with a value of

0.005, and ysg is the uncertainty of the ozone optical

thickness, with a value of 0.0045. Eq. (11) shows that AOT

uncertainty is slightly proportional to total optical thickness,



Table 3

Sun photometer uncertainties

Wavelength (nm) 443/440 490/500 560 670/675 870

SIMBAD ysa 0.021 0.020 0.018 0.011 0.010

Microtops II ysa 0.015 0.015 – 0.015 0.015
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while inversely proportional to airmass. Typical Microtops

II ysa values are presented in 3. Simbad uncertainties are

described in Deschamps et al. (2004) and presented in

Table 3.

More information about the SIMBIOS Instrument Pool

uncertainty analysis can be found in Fargion and McClain

(2003).

2.4.1. Ångström Exponent calculation

The 2ngstrfm exponent is a parameter derived from

multiple bands of AOT data to express the spectral nature of

those bands, and thus information about the size distribution

of the aerosol particles (O’Neill & Royer, 1993). It is

defined by the 2ngstrfm Law (2ngstrfm, 1929), shown in

Eq. (12):

sa kð Þ ¼ sa0k
�a ð12Þ

where a is the 2ngstrfm exponent, sa(k) is the AOT for

wavelength k, and sa0 is the AOT at 1 Am.

The 2ngstrfm exponent is often calculated by determin-

ing the slope of a linear fit to the logarithm of k vs. the

logarithm of sa. For two bands, this is expressed in Eq. (13):

a ¼ ln sa k2ð Þ½ � � ln sa k1ð Þ½ �
ln k1ð Þ � ln k2ð Þ : ð13Þ

From an operational point of view, the above approach

can yield different values of a when used with different

combinations of k1 and k2 if a is not purely constant with

respect to wavelength or sa is affected by noise (Eck et al.,

1999).
Table 4

Quality control tests

Visualization type Purpose

Map of data locations to determine if GPS is working pro

Text file with data statistics to confirm data are within reasonab

Data histogram plots to confirm data are within reasonab

Plot of calibration

coefficient (V0) time sequence

to determine if calibration coefficie

used properly and if the instrumen

Time sequence plot of both

screened and unscreened

sa (500 nm) values

to confirm data are within reasonab

that the pointing and cloud screeni

worked properly

Time sequence plot of both screened

and unscreened 2ngstrfm exponent

values

to confirm data are within reasonab

that the pointing and cloud screeni

worked properly
The SIMBIOS Project uses sun photometers with a

variety of different spectral bands, each with unique

uncertainty values. As such, an 2ngstrfm exponent

computational method was established that is less vulner-

able to varying combinations of k, minimizes noise in sa,
and provides an uncertainty value for the result. This

approach uses a non-linear, least squares, iterative fit of all

available optical values between 440 and 870 nm of sa to
Eq. (12). Individual values of sa in this fit are weighted by

their uncertainty, and the a result has an uncertainty

associated with that of the corresponding sa’s.
Extremely unreasonable 2ngstrfm exponents, and

2ngstrfm exponents with large uncertainties, were

removed from the SIMBIOS instrument dataset. a was

restricted to within �1.0 and 3.0, values intended to

encompass the greatest potential geophysical range and

avoid masking instrumental or calibration errors which

could result in an a bias. This restriction is intended to

remove a values that are unreasonable due to sa noise.

Further noisy sa screening is achieved by removing

2ngstrfm exponents whose uncertainty does not abide by

the following empirical relationship:

Da b 2a þ 0:5 ð14Þ

The basis for the above equation comes from a semi-

empirical analysis of the relationship between sa noise and

2ngstrfm exponent uncertainty illustrated in Fig. A.1, and

is intended to only remove 2ngstrfm exponents derived

from extremely noisy sa’s. Data whose 2ngstrfm exponents

are outside the reasonable range or whose 2ngstrfm
exponent uncertainty does not fit Eq. (14) are marked as
Action taken if error

perly remove/modify location if data

is over land or clearly not in the

cruise region

le bounds investigate source file and processing

routines for errors

le bounds investigate source file and processing

routines for errors

nts were

t is temporally stable

investigate if calibration coefficient

processing was correct, possibly

replace instrument filters or detectors

le bounds and

ng routines

investigate source file and processing

routines for errors, notify PI if measurement

protocol was incorrect

le bounds and

ng routines

investigate source file and processing routines

for errors, notify PI if measurement protocol

as incorrect



Table 5

Entire dataset statistics

All handheld data, 1709 data points

Parameter Mean Median STD Skewness Kurtosis

AOT 440 nm 0.22 0.14 0.20 2.0 5.4

AOT 443 nm 0.22 0.14 0.20 2.0 5.5

AOT 490 nm 0.20 0.13 0.19 2.1 6.7

AOT 500 nm 0.20 0.12 0.19 2.2 6.8

AOT 560 nm 0.18 0.11 0.18 2.4 8.5

AOT 670 nm 0.15 0.09 0.16 2.8 12.

AOT 675 nm 0.15 0.09 0.16 2.8 12.

AOT 870 nm 0.13 0.08 0.15 3.3 16.

2ngstrfm
exponent

0.87 0.97 0.65 0.0 �0.3

Land distance 580 220
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dmissingT. AOT values for the same data point are not

removed. More details about 2ngstrfm exponent computa-

tion and an analysis of the relationship between sa and

2ngstrfm exponent uncertainty are in Appendix A.

2.5. Quality control

Following processing, a number of plots, maps, and

other data visualizations are created for each file. These

are used to perform QC to ensure data fall within

reasonable bounds of time, date, location, and value.

The plots are also archived in SeaBASS for future use

(Werdell & Bailey, 2002). Table 4 lists the various

visualizations, their purpose, and the actions taken when

problems are found.

If a particular file passes all the above QC tests, it is

ingested into the SeaBASS database and archived. All data

in this analysis passed QC tests.
3. Entire dataset analysis

The SIMBIOS Project has been collecting and

archiving remotely sensed, surface sun photometer

aerosol data since 1997. While this has involved a

variety of sun photometer designs, this analysis is

restricted to the Microtops II and Simbad sun photo-

meters, due to the frequency of their measurements,

similar nature of their designs, and confidence with their

calibration, processing, QC, and uncertainty analysis.

This dataset represents the final versions of all Microtops

II and Simbad files archived in SeaBASS as of May

2003. It consists of 102 Microtops II and 46 Simbad

files, representing 34 experiments and 145 individual

cruises (see Table D). The dataset contains nearly 11,000

individual data points, about 4800 of which were taken

with the Microtops II and 5900 with the Simbad. These

measurements were made in a variety of atmospheric

conditions and represent several aerosol types. Due to the

temporally and geographically irregular nature of these
Fig. 2. Distance to land histogram. Distance to major landmasses were

computed for each global 1�18 region.
data, much of the scientific benefit requires splitting data

into sections representing the different aerosol popula-

tions. Before that can be done, however, a statistical

analysis of the entire data set can be useful to establish

the nature of the data and its underlying processing

routines.

The Microtops II and Simbad radiometers utilize differ-

ent sets of filters and thus have varying band center

wavelengths. To account for this, an interpolation routine

was utilized to compute AOT for common bands. This

interpolation uses the spectral AOT, 2ngstrfm exponent,

and associated uncertainties to determine an AOT and

uncertainty for common bands. For the purposes of

classification (see below), Simbad AOT values were

interpolated to an AOT at 500 nm.

3.1. Binning

In an attempt to further reduce the sampling effect on the

data, we have binned it into half hour segments with near

similar location. For AOT data, binning utilizes the geometric

mean, which is most appropriate for log-normally distributed

data (Campbell, 1995). Arithmetic means were used for the

normally distributed 2ngstrfm exponent. Binning reduced

the number of individual data points from 10,787 to 1715,

indicating that a considerable portion of the original data were

captured in groups and are perhaps redundant. To test binning

validity, statistics of the binned data were compared to the

same for the original data. Binned AOT median values are

nearly unchanged (as can be expected for log-normally

distributed data), while the binned mean 2ngstrfm exponent

value has not changed. We can therefore conclude that data

binning has reduced redundant data while preserving its

statistical characteristics.

3.2. Basic statistics

Most of the aerosol data collected by the SIMBIOS

Project was gathered along with other bio-optical data, such

as profiles of apparent and inherent water optical properties

and phytoplankton pigment concentrations. Typically, mea-



Fig. 3. Histograms of AOT at 500 nm (A) and 2ngstrfm exponent (B) for the entire (solid line), Microtops II (dotted line) and SIMBAD (dashed line) data sets.

Bin sizes used in histogram computation were 0.04 for AOT at 500 nm and 0.2 for 2ngstrfm exponent.
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surements are made as part of a larger experiment and/or

research cruise (Mueller et al., 2003a). While this can be

quite useful to fully understand the radiative transfer of a

particular scene, time, or region, analysis of the entire

dataset is influenced by the particular temporal and spatial

data distribution. Indeed, Figs. 1 and 2 show that data

sampling favors coastal regions, particularly the continental

United States and East Asia. Distance to shore, as shown in

Fig. 2, is a rough calculation of distance to major

landmasses for each degree latitude/longitude box (see

Section 3.3). In subsequent sections of this paper, we

attempt to account for the irregularity in our distribution by

splitting the data into groups of similar data representing

various aerosol species.

Table 5 contains various statistical parameters describing

the aerosol data set. For the AOT values, differences between

mean and medians indicate that the data are not normally

distributed or represent several different populations. Positive
Fig. 4. Two-dimensional histograms of aerosol optical
skewness and kurtosis further establish the existence of non-

normal distribution, indicating that most outliers are larger

than the mean (positive skewness) and that the histogram has

a leptokurtic (sharply peaked) nature (positive kurtosis)

(Sokal & Rohlf, 1995). The severity of this skewness and

kurtosis increases with AOTwavelength. We intend to show

that AOTs, by nature, are log-normally distributed. Fig. 3A is

the histogram of AOT at 500 nm. While the histogram is

clearly more similar to a log-normal than a normal

distribution, its multiple peaks and generally irregular nature

suggest the data are composed of several populations

representing different aerosol species. This is reinforced in

the histogram of the 2ngstrfm exponent (Fig. 3B) and in

Table 5. The 2ngstrfm exponent is derived from ratios of

AOTat different bands (Section 2.4.1), so we would expect it

to be normally distributed if the data were from a single

population. However, mean and median values differ, and

the kurtosis is non-zero. Therefore, the data must be split
thickness at 500 nm versus 2ngstrfm exponent.



Fig. 5. Histograms of data split by distance to land. Solid lines represent data measured within 300 km of a major landmass, while dashed lines represent data at

least 300 km from shore.

Table 6

Data split by major landmass distance

Parameter Mean Median STD

Coastal: xV300 km, 971 data points

AOT 500 nm 0.21 0.14 0.20

AOT 870 nm 0.13 0.07 0.16

2ngstrfm exponent 1.1 1.1 0.60

Offshore: xN300 km, 738 data points

AOT 500 nm 0.18 0.10 0.17

AOT 870 nm 0.13 0.09 0.14

2ngstrfm exponent 0.55 0.52 0.58
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into component aerosol species prior making any statistical

conclusions about nature of maritime aerosols.

Fig. 4 is a scatter plot of AOT at 500 nm vs. 2ngstrfm
exponent, illustrating the different aerosol specie present in

the data. The 2ngstrfm exponent value is related to aerosol

particle size (O’Neill & Royer, 1993), so aerosol type can be

inferred by location on a scatter-plot like this. Data clusters

indicate the presence of a specific aerosol type. The scatter

plot shows wind-driven maritime and continental dust

aerosols, which can be found in oceanic regions far from

shore. They tend to have large particle sizes, and thus small

2ngstrfm exponents. Maritime aerosols typically have low

optical thicknesses, so data with 2ngstrfm exponents less

than about 1.0 and AOT values less than about 0.15 can

generally be attributed to maritime aerosols (Smirnov et al.,

2003). Dust typically has large particle size and large optical

thicknesses, so the widely scattered data with AOT values

greater than 0.15 could be attributed to dust. In our data

classification (see Section 4), we attempt to identify these

two types of aerosols, as they are important for our Ocean

Color satellite atmospheric correction. Other non-dust

continental aerosols, from sources such as urban pollution

or biomass burning, are not modeled as completely in

SeaWiFS (they are more difficult to determine with the

available spectral sensitivity). Although they are important

for SeaWiFS atmospheric correction, they are difficult to

validate. These non-dust continental aerosols tend to be

closer to land and more optically complex. While Fig. 4

shows several distinct data clusters for these high (greater

than 1.0) 2ngstrfm exponent aerosols, our subsequent

classification groups them into one class, as these aerosols

are not typically modeled in ocean color atmospheric

correction.

Of course, these boundaries are purely empirical, and

Fig. 4 shows many cases where the type of aerosol is

ambiguous. This could be the result of several factors,

including higher 2ngstrfm exponent uncertainties as AOT

decreases and complex vertical aerosol distributions. Sec-

tion 4 is devoted to dividing the data into species in a more
elegant nature that utilizes iterative classification routines

and geographical data.

3.3. Geographic data dependency

Geographic location can be a useful metric to help assess

the type and origin of the aerosol measured by a particular

data point. However, this quickly becomes complicated

when dealing with thousands of measurements throughout

the entire globe. In an effort to simplify this process, we

added a field to our data that expresses the distance to the

nearest large landmass. Land distance is not an exclusive

way of determining aerosol type, as it neglects wind

direction and other aerosol circulation factors, is subject to

differences in source landmass, and is based upon a rather

arbitrary determination of what constitutes a dlarge land-

massT. Despite this, land distance, when used in conjunction

with other aerosol parameters, can be useful when attempt-

ing to split the data into separate aerosol species. Land

distance was computed by creating a global map of distance

to nearest large landmass for each point within a latitude and

longitude degree grid.

In an effort to demonstrate the significance of land

distance upon aerosol parameters, the SIMBIOS Instrument

Pool was split into two groups. The first, called the dcoastalT
class, consists of data within 300 km of a major landmass.

The doffshoreT class is all the data captured at least 300 km



Table 7

Class center boundaries

Class sa min sa max a min a max Subclasses Data points

Class 1—dust 0.2 1.50 �0.5 0.8 5 237

Class 2—maritime 0.00 0.15 �1.0 0.9 14 592

Class 3—non-dust continentala – – – – 16 886

a Class 3 represents all previously ungrouped data and is not constrained by class center.
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from a major landmass. Selection of 300 km as the divider

between coastal and offshore regions is arbitrary, but

sufficient to illustrate the differences between data close

to and far from land. Fig. 2 is the histogram for the quantity

of data in each class. Histograms of the data products

themselves are shown in Fig. 5, while Table 6 contains

statistics for each class. Histograms in Fig. 5 show that the

distribution of each class is not smooth; clearly this is not a

foolproof method to split aerosols into separate species. In

addition large particle size (and thus low 2ngstrfm
exponent) desert dusts can be encountered in both near

shore and mid-ocean basins. Each class, however, shows

characteristics of specific aerosol types. The dcoastalT class
tends to have high 2ngstrfm exponents and relatively more

data with high AOTs. This agrees with the assumption that

non-dust continental aerosols are more likely to be close to

their source over land. dOffshoreT aerosols tend to have

much lower AOTs and a lower range of 2ngstrfm
exponents, as expected of maritime and dust aerosols. The

dmid-rangeT class exhibits characteristics of both the other

classes. Values in Table 6 reinforce this, showing decreasing

AOT 500 nm values, decreasing 2ngstrfm exponents, and

flat AOT 870 nm values with each class farther from shore.

The number of measurements in each landmass distance

class is roughly equal, indicating that the SIMBIOS

instrument pool sampled in regions both near and far from

the shore.
Fig. 6. Location on an AOT/2ngstrfm exponent scatter plot of each class

Red data represent class 1 dust aerosols, while class 2 maritime aerosols are

shown in blue. Green data points represent class 3 non-dust continenta

aerosols. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
4. Classification

The temporally and geographically irregular nature of

our data must be accommodated prior to any serious

analysis. Otherwise, data statistics represent the temporal/

geographical sampling methods as much as the nature of

aerosols themselves. Furthermore, the SIMBIOS surface

sampling strategy to date has focused on coastal regions and

high AOT aerosol events. A change in this strategy would

alter the results of a macroscopic statistical analysis. To

account for this non-uniform sampling, an unsupervised

classification routine has been utilized to split the data into

major groups independent of measurement specifics. The

entire aerosol dataset is composed of several statistical

populations of data, each corresponding to an aerosol type

(such as desert dust, urban pollution, maritime sea salt, etc.).

The overly spare and non-uniform sampling methods

associated surface optical measurements at sea mean that

the measured ratios of aerosol type cannot represent the
ratios of the world as a whole. We therefore separate the

data into each of these populations so we can report

population statistics that are not overly affected by sampling

methods. This is done by identifying natural clusters in the

data through an unsupervised classification routine, then

grouping these clusters into a handful of aerosol classes. The

validity of this classification is tested by performing a

Kolmogorov–Smirnov (KS) test for goodness of fit to a

normal data distribution for 2ngstrfm exponent or a log-

normal data distribution for AOT for each class. If each

class is closer to a normal or log-normal distribution than

the data as a whole, we conclude that the class represents a

single population of aerosol type, or at least several types

with a single set of optical characteristics (AOT and

2ngstrfm exponent).

4.1. K-means classification

The K-means unsupervised classification technique

(Duda & Hart, 1973; Everitt, 1993; Schott, 1997,

implemented using Interactive Data Language (IDL)

version 5.3, from Research Systems) was used to group

the data into clusters of similar nature, each representing

a different aerosol type. This technique begins by

randomly selecting an initial number of multivariate
.

l



Table 8

Data split by class

Parameter Mean Median STD Distribution ratio

Entire binned dataset, 1715 data points

AOT 500 nm 0.20 0.12 0.19 2.2

AOT 870 nm 0.13 0.08 0.15

2ngstrfm exponent 0.87 0.97 0.65 2.5

Class 1 dust, 237 data points

AOT 500 nm 0.41 0.37 0.27 0.93

AOT 870 nm 0.32 0.26 0.25

2ngstrfm exponent 0.58 0.53 0.49 0.88

Class 2 maritime, 592 data points

AOT 500 nm 0.10 0.08 0.09 0.99

AOT 870 nm 0.08 0.06 0.08

2ngstrfm exponent 0.42 0.34 0.59 0.89

Class 3 non-dust continental, 886 data points

AOT 500 nm 0.21 0.17 0.15 2.7

AOT 870 nm 0.11 0.09 0.10

2ngstrfm exponent 1.3 1.2 0.47 3.4

Fig. 7. Histograms of AOT at 500 nm and 2ngstrfm exponent for classified

aerosol data. Class 1 dust aerosols are presented in red, class 2 maritime

aerosols in blue, and class 3 non-dust continental aerosols in green. Bin

sizes used in histogram computation were 0.04 for AOT at 500 nm (A) and

0.2 for 2ngstrfm exponent (B). Vertical black bars on the 2ngstrfm
exponent histogram show the equivalent 2ngstrfm exponents for SeaWiFS

aerosol models (Shettle & Fenn, 1979; Wang, 2000). (For interpretation o

the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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centers, Xj, for each class j. X is presented in bold to

indicate that it is a vector of spectral band centers. Data

points are assigned to the class with the minimum

distance, di, to X:

di; j ¼ Xj �Mi

� �2h i1=2
ð15Þ

where Mi is the vector of values for data point i. Once a

class has been found for each data point, class centers are

recomputed as the average of all values of M within class

j. This process is repeated iteratively until the re-

computation of X yields little or no change. Once this

has occurred, the final step uses the more sophisticated

Mahalanobis distance computation for the final class

assignment. The Mahalanobis distance, Di, is:

Di; j ¼ Xj �Mi

� �
VS�1

j Xj �Mj

��
ð16Þ

where (Xj�Mi)V is the transposed (Xj�Mi) and Sj
�1 is the

inverse of the covariance matrix for class j . The

covariance matrix, Sj, is computed:

Sj ¼

rj11 rj12
: : : rj1q

rj21 O
v

rjq1 rjqq

1
CCA

0
BB@ ð17Þ

where q is the number of classification parameters and

rjxy is the covariance for parameters x and y in class j. It

is computed:

rjxy ¼
XN
i¼1

Mjx ið Þ �Mmean jx

� �
Mjy ið Þ �Mmean jy

� �
N � 1

ð18Þ

where N is the number of data points within class j.
Three parameters were used for our data classification:

the natural logarithm of AOT at 500 nm (sa(500 nm)),

2ngstrfm exponent (a), and the natural logarithm of land

distance. AOT in other bands were not used because

spectral AOT values are highly correlated and their

relationship is expressed by the 2ngstrfm exponent.

Natural logarithms for AOT and land distance were used

because the distribution of those data more closely

resemble a log-normal than a normal distribution. The K-

means classification technique assumes that input param-

eters are generally normally distributed. Natural logarithms

of AOT and land distance were computed to convert those

data distributions to a form closer to normally distributed

than their natural state. To remove effects of scale, all three

bands were normalized so their mean values are zero and

unit is mean plus one standard deviation. Schott (1997)

suggests splitting data into more classes than needed, and

joining similar classes later, so our initial number of

subclasses was 35. Subclasses were then grouped based
f



Table 9

Class 1 and maritime AERONET Cimel statistics

Parameter Mean Mode STD

SIMBIOS class 2 maritime aerosols, 592 data points

AOT 500 nm 0.10 0.08 0.09

2ngstrfm exponent 0.42 0.25 0.59

AERONET Lanai sitea, Pacific Ocean, 722 data points

AOT 500 nm 0.07 0.06 0.05

2ngstrfm exponent 0.76 0.70 0.37

AERONET Nauru sitea, Pacific Ocean, 276 data points

AOT 500 nm 0.08 0.06 0.03

2ngstrfm exponent 0.43 0.30 0.35

AERONET Tahiti sitea, Pacific Ocean, 234 data points

AOT 500 nm 0.07 0.06 0.02

2ngstrfm exponent 0.74 0.70 0.27

AERONET Bermuda sitea, Atlantic Ocean, 590 data points

AOT 500 nm 0.14 0.09 0.09

2ngstrfm exponent 0.93 0.90 0.41

AERONET Ascension sitea, Atlantic Ocean, 338 data points

AOT 500 nm 0.13 0.11 0.07

2ngstrfm exponent 0.62 0.70 0.30

a AERONET data from Smirnov et al. (2002).
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upon the location of their class centers, Xj. Table 7 lists

boundaries for X that were used to create the final three

classes. Classes whose centers, Xj, fall within these ranges

are grouped into one of three final classes. Although these

boundaries are somewhat arbitrary, actual data values

extend beyond boundary ranges.

Boundaries between each class were chosen so that they

roughly correspond to major aerosol types (Dubovik et al.,

2002). Class 1 is meant to encompass desert dust, which

has large particle sizes (thus, low a values). Aerosol

optical thicknesses tend to be large when they are

dominated by dust, so this class incorporates subclasses

with high sa. Class 2 is meant to represent maritime, sea

salt aerosols, which typically have large particle sizes (and

thus low a) and occur in optically low magnitudes. Class 3

is meant to encompass all other aerosol types. This

includes non-dust continental aerosols such as urban

pollution. As shown in Appendix A, 2ngstrfm exponent

uncertainties become very large as AOT values decrease, so

forgiving upper and lower 2ngstrfm exponent bounds were

set for low AOT classes (1 and 4).
Table 10

Characteristics of the 12 SeaWiFS aerosol models

Aerosol model Relative humidity (%) Symbo

Oceanic 99 O99

Maritime 50, 70, 90, 99 M50–M

Coastal 50, 70, 90, 99 C50–C

Tropospheric 50, 90, 99 T50–T
4.2. Classification results and verification

Final classification results are shown in a sa–a scatter

plot in Fig. 6, histograms in 7, and tabulated in Table 8.

Results in Fig. 6 roughly follow major data clusters shown

in Fig. 4. Fig. 7 shows unimodal histograms, indicating that

classification has successfully split the data into unique

populations.

Identifying each class as definitively belonging to and

containing a specific aerosol type is difficult without

performing a trajectory analysis, beyond the scope of this

paper considering the number of data points involved. The

classification approach is an attempt to both glean all

possible aerosol information from the data and to remove

the effects of non-uniform spatial and temporal distribution.

This approach has its drawbacks, but we attempt to prove

each class represents a single population of aerosols by

testing the frequency distribution of AOTs and 2ngstrfm
exponents. O’Neill et al. (2000) and Ignatov and Stowe

(2002) show that populations of AOTs are distributed log-

normally and 2ngstrfm exponents normally. Unlike this

study, each used data with relatively regular spatial and

temporal distributions. O’Neill et al. (2000) analyzed

AERONET sun photometer measurements, while Ignatov

and Stowe (2002) examined aerosol retrievals from AVHRR.

We perform tests of AOT and 2ngstrfm exponent frequency

distributions for the entire dataset, then compare results of

the tests to the same for each class of data determined in the

previous section. If the class frequency distribution test

passes while the entire dataset fails, we can be confident that

each class represents a single data population. If that is the

case, we can be confident it is independent of spatial and

temporal distribution and appropriate for analysis.

The KS test for goodness of fit (Sokal & Rohlf, 1995) was

used to prove the hypothesis that our classified data are log-

normally (for AOT) or normally (for the2ngstrfm exponent)

distributed. The KS test examines difference between a pair

of cumulative relative frequency distributions. In this case,

we test that our data distribution ( f) matches a Gaussian

normal distribution (f̂). The following steps were used:

(1) Place the data in cumulative order;

(2) Standardize the data by setting the mean value to zero

and mean plus one standard deviation to one. This is f;

(3) Compute the Gaussian normal distribution, f̂, for the

same number of data points;
l 2ngstrfm exponent SSA, 865 nm

�0.086 1.0

99 0.091–0.502 0.981–0.999

99 0.224–0.757 0.971–0.997

99 1.185–1.519 0.930–0.987



Fig. 8. Global data distribution, by class. Class 1 dust aerosols data are in red, class 2 maritime aerosols are in blue and class 3 non-dust continental aerosols are

in green. In part A, blue shaded regions are more than 300 km from the nearest major coast. Boxes in parts A–D show regions identified for more detailed

analysis. Part E shows the quantity of data, by class, in each of these boxed regions.
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Table 11

Classification results, by region

Parameter AOT 500 2ngstrfm exponent Percentage

Mean Median Mean Median

Entire dataset

Class 1 dust 0.41 0.37 0.58 0.53

Class 2 maritime 0.10 0.08 0.42 0.34

Class 3 continental 0.21 0.17 1.26 1.20

Far from shore 0.18 0.10 0.56 0.52

Near shore 0.21 0.14 1.12 1.15

W. North America

All data 0.10 0.08 0.94 1.02

Class 1 dust 0.17 0.12 0.69 0.67 8%

Class 2 maritime 0.08 0.06 0.59 0.64 34%

Class 3 continental 0.10 0.09 1.18 1.18 58%

North Atlantic

All data 0.12 0.09 0.50 0.39

Class 2 maritime 0.11 0.08 0.33 0.28 69%

Class 3 continental 0.13 0.14 0.92 1.00 27%

Mid-Atlantic

All data 0.29 0.25 0.22 0.15

Class 1 dust 0.35 0.33 0.19 0.16 52%

Class 2 maritime 0.20 0.14 0.08 0.09 38%

Class 3 continental 0.31 0.30 0.93 1.15 10%

South Atlantic

All data 0.09 0.08 0.28 0.11

Class 1 dust 0.18 0.22 0.20 0.11 5%

Class 2 maritime 0.08 0.06 0.19 0.01 83%

Class 3 continental 0.16 0.18 0.89 0.86 13%

Pacific

All data 0.10 0.08 0.45 0.55

Class 2 maritime 0.09 0.08 0.42 0.52 89%

Class 3 continental 0.13 0.08 0.81 0.79 10%

South Asia

All data 0.28 0.32 1.00 1.09

Class 2 maritime 0.14 0.10 0.66 0.65 26%

Class 3 continental 0.33 0.35 1.11 1.11 72%

East Asia

All data 0.36 0.30 1.05 1.09

Class 1 dust 0.54 0.51 0.65 0.61 31%

Class 3 continental 0.28 0.26 1.23 1.17 69%
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(4) Find the largest difference between individual values

of f and f̂, and divide it by the number of data points,

n. This is the KS test statistic, gt;

(5) The KS critical value, g c, is computed as

gc ¼ 1:0427ffiffi
n

p � 1
2n
,

(6) If gt is less than gc, the data are normally (for

2ngstrfm exponent) or log-normally (for AOT)

distributed.

The ddistribution ratioT column in Table 8 shows the

results of the KS test for that particular class and data type.

The value is a ratio of the test statistic gt to the critical value,

gc. Values of one or less represent data that pass the frequency
distribution test, while increasing values indicate greater and

greater divergences from the log-normal or normal distribu-

tions. KS test distribution ratios for the entire dataset are

above 2.0, while classes 1 and 2 pass the KS test for both

AOT at 500 nm and 2ngstrfm exponent. Class 3, as the

container for all data that do not fall into class 1 or 2, fails the

KS test. Class 3 could be split into smaller, more specific

classes, but that was not done here, as it is beyond the scope of

this ocean color remote sensing validation.

Table 9 compares statistics of class 2 maritime data to that

from AERONET Cimel sun photometer sites in the Pacific

and Atlantic Oceans representing maritime conditions (from

Smirnov et al., 2003). Results compare very favorably,



Fig. A.1. Simulated values of sa were used to determine the relationship

with a and Da. In this figure, the solid line represents the calculated value

of a, dashed lines represent Microtops II aFDa, dotted lines represent

Simbad aFDa, empty diamonds represent Microtops II a values computed

when Gaussian random noise were added to the simulated sa, and filled

diamonds represent the same for the Simbad. Dsa was computed using an

airmass of 2.0. Simulations with other values of a show decreasing

uncertainty as a diverges from zero.
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especially in the Pacific Ocean, indicating that despite

differences in instrument design and deployment, AERO-

NET and SIMBIOS sun photometers yield similar measure-

ments of aerosol optical properties. AERONET and

SIMBIOS data are not, however, mutually exclusive.

AERONET makes much more frequent measurements at

fixed locations over an extended period of time, and can

invert the data to yield aerosol particle size distributions. In

contrast, SIMBIOS data are much less populous, do not

include size distributions, but have the ability to measure in

remote oceanic locations that AERONET cannot reach.

These results help confirm that AERONET is successfully

measuring maritime aerosol properties from island sites in the

Pacific Ocean, and to a lesser degree, in the Atlantic Ocean.
Fig. B.1. Comparison of concurrent measurements made with the Microtops II (abs

four Microtops II and SIMBAD measurements fell withinF1 min,F0.5 latitude, a

the 1:1 relationship between values, while the dotted line is a reduced-major axis (R

regression for AOT were performed in the log domain due to the log-normal dist
5. Surface data compared to SeaWiFS aerosol models

Comparison and validation of aerosol products from

ocean color sensors is one of the NASA SIMBIOS Project’s

main purposes for surface aerosol data (Wang et al, 2000).

Validation is performed with the SeaWiFS aerosol models

that are used for data processing to derive ocean color

products. The primary goal of the SeaWiFS mission is

routine measurements of global ocean color and ocean bio-

optical properties. Atmospheric and surface effects must be

removed from satellite measured radiances to retrieve ocean

near-surface signals. This is known as atmospheric correc-

tion (Gordon & Wang, 1994). In the visible part of the

spectrum, more than 90% of sensor-observed radiance is

removed during atmospheric correction. The SeaWiFS

atmospheric correction algorithm uses two NIR 40-nm wide

bands (centered at 765 and 865 nm) to estimate the aerosol

optical properties and extrapolate these into the visible

spectrum where ocean color products are derived (Gordon

& Wang, 1994). Aerosol models are needed for this process.

The SeaWiFS 12 aerosol models are the Oceanic, Maritime,

and Tropospheric models from Shettle and Fenn (1979),

while Coastal models were introduced by Gordon and Wang

(1994). Each model is modified by relative humidity,

so the Oceanic model with the relative humidity (RH) of

99% is referred to as O99, the Maritime models with RH

of 50%, 70%, 90%, and 99% as M50, M70, M90, and M99,

the Coastal model with RH of 50%, 70%, 90%, and 99% as

C50, C70, C90, and C99, and the Tropospheric model with

RH of 50%, 90%, and 99% as T50, T90, and T99 (Wang,

2000). These aerosol models are all non- and weakly

absorbing. Table 10 summarizes model optical properties. In

Table 10, the 2ngstrfm exponent is the mean value for a

given aerosol model, while the single scattering albedo

(SSA) value is at a wavelength of 865 nm. The same
cissa) and SIMBAD (ordinate) sun photometers. Two hundred and seventy-

ndF0.5 longitude of each other, and are plotted above. The solid line shows

MA) regression between instruments. Note that both the plot and the RMA

ribution of these data.



Table B.1

Instrument comparison

Field (AOT or 2ngstrfm) 440 443 490 500 560 670 675 870 2ngstrfm
% within uncertainty 87.9 95.6 92.7 93.4 89.0 81.7 89.7 82.4 96.7
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atmospheric correction algorithm with a similar aerosol

model set is also used for ocean color retrieval from NASA’s

Moderate Resolution Imaging Spectroradiometer (MODIS)

(Esaias et al., 1998; Salomonson et al., 1989).

The aerosol model is defined by its particle size

distribution and refractive indices (both real and imaginary

parts). The 2ngstrfm exponent is related to the particle size

distribution. Low 2ngstrfm exponent values indicate

large particle sizes, while high values represent small

aerosol particle sizes. For a given aerosol particle size

distribution (aerosol model), the 2ngstrfm exponent is

defined. Therefore, 2ngstrfm exponents from ground

measurements can be used to indicate if an appropriate

aerosol model set in terms of the particle size distribution

is being used for SeaWiFS data processing. Note that,

however, this only gives part of picture in terms of

aerosol particle size distribution. To validate the aerosol

model and give a complete picture, the refractive indices

are also needed (Gross-Colzy et al., 2002). The refractive

indices (or aerosol single-scattering albedo) can be derived

with sky radiance measurements (Dubovik & King, 2000;

Vermeulen et al., 2000; Wang & Gordon, 1993; Zhang &

Gordon, 1997). Fig. 7B provides comparison results of the

2ngstrfm exponent from the SeaWiFS aerosol models

with those of surface measurements. The 2ngstrfm
exponent values for each aerosol model is represented as

a vertical line. Ground-based sun photometer measure-

ments of 2ngstrfm exponent obtained in the maritime

environment are well represented with SeaWiFS aerosol

models. Many Maritime aerosols have 2ngstrfm expo-

nents lower than the SeaWiFS O99 model. The maritime
Fig. C.1. Relationship between airmass and AOT at 500 nm (A) and 2ngstrfm exp

account for log-normal distribution of AOT at 500 nm, the correlation was calcu
aerosol 2ngstrfm exponent histogram width is partly due

to measurement uncertainty, which is particularly large for

low AOT maritime aerosols. An empirical test was

performed to determine what portion of the Maritime

aerosol 2ngstrfm exponent histogram width is due to

uncertainty and which is geophysical. The histogram

FWHM was measured as high uncertainty values were

removed. The FWHM decreased linearly and was

extrapolated to yield a value of about 0.70 with all

uncertain data points removed. The mode of this histo-

gram stayed constant at about 0.25. Therefore, FWHM

values without error are �0.1 and 0.6, just within the

range of SeaWiFS aerosol models.
6. Regional results

The main focus of this paper is a global analysis of the

entire SeaBASS handheld sun photometer dataset. However,

examining the classification results on a regional basis may

have value. Seven regions around the globe were deter-

mined. Fig. 8 shows the geographical extent of these regions,

along with enlarged views of three small regions and a plot

with the class distribution in each region. In some cases,

regions correspond to major study areas, such as the Western

coast of North America (CalCOFI, IMECOCAL), East Asia/

Sea of Japan (ACE-Asia) and South-West of the Indian Sub-

continent (INDOEX). Other regions contain large oceanic

basins, such as the Pacific Ocean region or each of the three

Atlantic Ocean regions. Statistics associated with each

region are in Table 11.
onent (B). The correlation coefficients are 0.010 and 0.135, respectively. To

lated with the logarithm of AOT values.



Table D.1

Data sources

Investigator(s) Instrument Institution Experiment(s) Cruise(s) Dates # data

R. Frouin Simbad Scripps Institution of Oceanography IMECOCAL IMECOCAL0201, -207, -301 2002/01/21–2003/02/15 46

R. Arnone Microtops Naval Research Laboratory CoJet 7 Ocolor 2002/05/20–2002/05/24 105

W. Balch Microtops Bigelow Laboratory Scotia Prince Ferry s980911w, -17w, -18w, -29w; s981004w,

-5w, -12w, -17w, -18w, -20w; el9907;

s990523w; s990523w; s990605w, -6w;

s990605w, -10w, -19w, -21w; s990802w,

-10w, -23w, -24w; s990912w, -13w, -23w,

-24w, -25w; s991008w, -12w, -16w;

s000604w, s000702w, -11w, -12w;

s000810w, -11w, -12w; s000914w, -30w;

1998/09/11–2000/09/30 327

A. Barnard, R. Letelier Microtops Oregon State University MOCE MOCE5 1999/10/01–1999/10/20 230

K. Carder Microtops University of South Florida TOTO tt0499 1999/04/14–1999/04/19 13

R. Frouin, P.-Y. Deschamps,

D. Cutchin, P. Strutton,

P. Flatau, B.G. Mitchell

Simbad Scripps Institution of Oceanography,

Université des Sciences et

Technologies de Lille,

Monterey Bay Aquarium

Research Institute

MOKIHANA, INDOEX,

CALCOFI,

MICRONESIAN,

Sea of Japan, TOTO,

VENICE, AMLR,

ACE-ASIA, BILIM,

P380108, POMME,

KAIMIMOANA,

OCEANIA

MOKIHANA0998, AEROSOLS99,

BILIM9910, -0008, INDOEX99

KAIMIMOANA0799, -0600,

RB-01-02,IOFFE01,

MICRONESIAN1098, OCEANIA1999,

POMME01, tt0499,

AMLR2000, AMLR2002,

cal9807, -9,

cal9901, -8, -10,

cal0004, cal0007, -10,

cal0101, -4, -7, -10,

cal0204, WESPALIS2,

Venice Tower, Nacre,

SEAOFJAPAN0799, -0003

1998/07/18–2002/04/23 5105

D. Johnson Microtops Naval Research Laboratory CoJet 5, 6 Pelican, cojet 6 2001/12/03–2002/3/05 328

K. Knobelspiesse Microtops NASA Goddard Space Flight Center NORBAL, CALCOFI norbal2002, cal0107 2001/07/10–2002/10/07 633

A. Magnuson, M. Mallonee,

P.J. Werdell

Microtops University of Maryland,

NASA Goddard Space Flight Center

BIOCOMPLEXITY bio0101 2001/04/04–2001/04/06 160

Majewski Simbad Curtin University of Technology LB02 R/V Lady Basten 2002/06/06–2002/06/11 13

K. Markowicz, P. Flatau Microtops Scripps Institution of Oceanography INDOEX INDOEX99 1999/02/26–1999/03/30 779

M. Miller, M. Reynolds Microtops Brookhaven National Laboratory Aerosol99 Aerosol99 1999/01/17–1999/02/06 528

S. Pegau Microtops Oregon State University GOCAL GOCAL99B 1999/10/29–1999/11/03 22

A. Subramaniam Microtops, Simbad Univeristy of Maryland trichonesia, BRAZIL,

MANTRA PIRANA,

NOAA CSC, Searcher,

trichototo,

MASS BAY

trichonesia99, mar03atl,

JAN01SJ, JUN01KN,

JUL01KN, JUL02PAC,

wf022, JUL02MB,

oct99mab, NOV98SAB,

Searcher99, trichototo99

1998/03/26–2002/04/10 625

R. Frouin, B.G. Micthell Simbad Scripps Institution of Oceanography CALCOFI cal0207, cal0211 2002/07/02–2002/11/25 369

E.J. Welton Microtops NASA Goddard Space Flight Center ACE ASIA RB0102 2001/03/15–2001/04/20 932
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7. Conclusions

The NASA SIMBIOS Project has been collecting,

processing and archiving aerosol optical data from handheld

sun photometers in maritime locations since 1997, and to

date has collected nearly 11,000 individual measurements

from 145 individual cruises. This paper describes methods

used by the SIMBIOS Project to calibrate instruments,

process their data, remove erroneous measurements, per-

form quality control, and archive the results.

Maps and statistical analysis of the dataset as a whole

reveal that it is heavily dependent upon its spatial and

temporal collection characteristics. While about a third of

the data were captured more than 500 km from a major

landmass, much of the data were collected in coastal North

America, East Asia, and Europe. Likewise, frequency

histograms of AOT and 2ngstrfm exponent show several

peaks, indicating that several different populations of

aerosols were measured.

To remove data collection characteristics from an overall

analysis, a semi-empirical K-means unsupervised classifi-

cation technique was used to separate the data into optically

unique populations. This was validated by proving (with the

KS goodness of fit test) that individual classes are more

likely to be log-normally (for AOT) or normally (for

2ngstrfm exponents) distributed than the dataset as a

whole. This proof also reinforces the claim by several

others (Ignatov & Stowe, 2002; O’Neill et al., 2000) that

AOT values are log-normally distributed and should be

treated appropriately.

Finally, properties for each class were presented, along

with the characteristics of each class by regional oceanic

basin. 2ngstrfm exponents from class 2 maritime data

compare well with SeaWiFS aerosol models, and favorably

with maritime aerosols measured by land-based AERONET

Cimels in island sites. This further validates the SIMBIOS

sun photometer dataset, which is calibrated with respect to

AERONET Cimels. It is important to note, however, that a

definitive comparison between 2ngstrfm exponents from

maritime aerosols is difficult due to the large uncertainties

associated with computing 2ngstrfm exponents in low

aerosol optical thicknesses. In any case, the dataset adds to

the scientific body of knowledge by extending sampling to

previously remote maritime regions.

News and updates about the SIMBIOS sun photometer

instrument pool can be found at http://simbios.gsfc.nasa.

gov/Sunphotometers.

SIMBIOS data are available, with some restrictions, at

http://seabass.gsfc.nasa.gov.
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Appendix A. Ångström exponent computation

The 2ngstrfm exponent computation method used in this

paper and by the SIMBIOS Project differs from the more

common natural logarithm band ratio method. Rather than

only using pairs of sa to determine the2ngstrfmexponent, all

available sa’s are utilized. This is intended to reduce the effect
of sa uncertainty on the 2ngstrfm exponent, while account-

ing for the variety of sa spectral bands in our instruments. The

approach uses a non-linear, least squares, iterative fit to all

available optical values of sa to Eq. (12). For the purposes of
fitting, Eq. (12) is expressed as the geometric model:

y ¼ axb ðA:1Þ
where paired values of x and y (k and sa(k), respectively)
are fit using parameters a=sa0 and b=�a. Initial estimates of

a for iteration are set to the sa from the longest available

wavelength, while estimates for b are computed using an

average value of a from Eq. (13) for all spectrally adjacent

pairs of sa. Dsa values, computed as in Section 2.4, are used

to create weights for each sa used in the fit. The fitting

routine returns the fitted value (in our case, a) and the total

error of that fit to the data. Because error based weights

were used with input values of sa, the total fit error can be

used as the uncertainty in a. Therefore, Da expresses both

the uncertainty associated with individual values of sa(k)
and deviation from Eq. (13). Data are removed if they have

very large Da values and thus do not fit the Junge Lawang

(2ngstrfm, 1929) and cannot be expressed with an

2ngstrfm exponent.

Fig. A.1 expresses the relationship between sa and Da.
Data were synthesized for sa (500 nm) between 0.0 and 1.0

so that sa values at other wavelengths conform to a uniform

2ngstrfm exponent. a and Da were then calculated using

the fitting method shown above. Next, Gaussian random

noise with a mean of zero and a standard deviation equal to

Dsa were added to the synthesized sa values and a was

recomputed. The scatter in the recomputed a values

corresponds with Da, indicating that it is an appropriate

measure of the uncertainty of a. Fig. A.1 also illustrates the

 http:\\simbios.gsfc.nasa.gov\Sunphotometers 
 http:\\seabass.gsfc.nasa.gov 
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non-uniform nature of Da with respect to H a. Indeed, a
becomes dominated by uncertainty when sa is less than 0.1

and Dsa exceeds the absolute value of sa.
Appendix B. Instrumental differences

To ensure the SIMBIOS Instrument Pool dataset

continuity, a comparison between concurrent measure-

ments was performed. Two hundred and seventy-four

Microtops II and SIMBAD measurements fell within F1

min, F0.5 latitude, and F0.5 longitude of each other

(measured from the same ship). Fig. B.1 contains scatter

plots of these data for AOT at 500 nm (Fig. B.1A) and

2ngstrfm exponent (Fig. B.1B). The AOT 500-nm

relationship is well behaved, with minimal scatter and a

reduced-major axis (RMA) regression slope of 0.979.

93.4% of the data fall within uncertainty values. The

2ngstrfm exponent relationship shows considerably more

scatter, although 96.7% of the data fall within the

(relatively large) uncertainty values. The RMA regression

slope for 2ngstrfm exponent is 0.887. A comparison

between all bands is presented in Table B.1. The vast

majority of AOT and 2ngstrfm exponent data fall within

uncertainty values of each other, and have a relationship

without significant biases or trends.
Appendix C. Diurnal stability

AOTs and 2ngstrfm exponents from the SIMBIOS

Instrument Pool should be independent of measuring

geometry and time. To test this, airmass values from each

measurement were plotted against AOT at 500 nm and

2ngstrfm exponent. Fig. C.1 shows these plots. The

correlation coefficient for the airmass vs. logarithm of

AOT at 500 nm (Fig. C.1A) is 0.010, indicating a negligible

linear relationship. The relationship between airmass and

2ngstrfm exponent (Fig. C.1B) is somewhat larger, with a

value of 0.135. Due to the higher uncertainty associated

with the 2ngstrfm exponent, this value can also be

associated with a negligible linear relationship. Therefore,

there is no indication of the type of calibration errors that

may be shown with a relationship between AOT, 2ngstrfm
exponent and airmass.
References

2ngstrfm, 2. (1929). On the atmospheric transmission of sun radiation and

on dust in the air. Geografos Annale Deutsche, 11, 156–166.

Everitt, B. (1993). Cluster analysis (Third edition). New York7 Halsted

Press.

Campbell, J. W. (1995). The lognormal distribution as a model for bio-

optical variability in the sea. Journal of Geophysical Research,

100(C7), 13237–13254.
Deschamps, P. -Y., Fougnie, B., Frouin, R., Lecomte, P., & Verwaerde, C.

(2004). SIMBAD: A field radiometer for satellite ocean—Color

validation. Applied Optics, 43, 4055–4069.

Dubovik, O., & King, M. (2000). A flexible inversion algorithm for

retrieval of aerosol optical properties from Sun and sky radiance

measurements. Journal of Geophysical Research, 105, 20673–20696.

Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King,

M. D., et al. (2002). Variability of absorption and optical properties of

key aerosol types observed in worldwide locations. Journal of the

Atmospheric Sciences, 59, 590–608.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis.

New York7 John Wiley and Sons.

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill,

N. T., et al. (1999). Wavelength dependence of the optical depth of

biomass burning, urban, and desert dust aerosols. Journal of Geo-

physical Research, 104(D24), 31333–31349.

Esaias, W. E., Abbott, M. R., Barton, I., Brown, O. B., Campbell, J. W.,

Carder, K. L., et al. (1998). An overview of MODIS capabilities for

ocean science observations. IEEE Transactions on Geoscience and

Remote Sensing, 36, 1250–1265.

Fargion, G. S., & McClain, C. R. (2003). SIMBIOS Project 2002 Annual

Report, NASA Tech. Memo. 2003-211622, NASA Goddard Space Flight

Center, Greenbelt, MD.

Fargion, G. S., & Mueller, J. L. (2000). Ocean Optics Protocols for Satellite

Ocean Color Sensor Validation: Revision 2. NASA Tech. Memo. 2000-

209966, Eds., NASA Goddard Space Flight Center, Greenbelt, MD.

Fargion, G. S., Barnes, R., & McClain, C. (2001). In Situ Aerosol Optical

Thickness Collected by the SIMBIOS Program (1997–2000): Protocols,

and Data QC and Analysis. NASA Tech. Memo. 2001-209982, Eds.,

NASA Goddard Space Flight Center, Greenbelt, MD.

Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiance and

aerosol optical thickness over the oceans with SeaWiFS: A preliminary

algorithm. Applied Optics, 33, 443–452.

Gross-Colzy, L., Frouin, R., Pietras, C., & Fargion, G. (2002). Non-

supervised classification of aerosol mixtures for ocean color remote

sensing. In R. Frouin, Y. Yuan, & H. Kawamura (Eds.), Proceedings of

SPIE Vol. 4892, Ocean Remote Sensing and Applications (pp. 95–104).

Bellingham7 SPIE.

Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., et

al. (1998). AERONET—A federated instrument network and data

archive for aerosol characterization. Remote Sensing of Environment,

66, 1–16.

Ichoku, C., Levy, R., Kaufman, Y. J., Remer, L. A., Li, R. -R., Martins,

V. J., et al. (2002). Analysis of the performance characteristics of the

five-channel microtops II sun photometer for measuring aerosol

optical thickness and precipitable water vapor. Journal of Geophysical

Research, 107(D13), Art No. 4179.

Ignatov, A., & Stowe, L. (2002). Aerosol retrievals from individual

AVHRR channels: Part II. Quality control, probability distribution

functions, information content, and consistency checks of retrievals.

Journal of the Atmospheric Sciences, 59, 335–362.

Iqbal, M. (1983). An introduction to solar radiation (pp. 390). San Diego,

CA7 Academic Press.

Kasten, F., & Young, A. T. (1989). Revised optical airmass tables, an

approximation formula. Applied Optics, 28, 4735–4738.

Knobelspiesse, K. D., Pietras, C., & Fargion, G. S. (2003). Sun-pointing

error correction for sea deployment of the MICROTOPS II handheld

sun photometer. Journal of Atmospheric and Oceanic Technology, 20,

767–771.

Komhyr, W. D., Grass, R. D., & Leonard, R. K. (1989). Dobson

spectrophometer 83: A standard for total ozone measurements, 1962–

1987. Journal of Geophysical Research, 94, 9847–9861.

Morys, M., Mims III, F. M., Hagerup, S., Anderson, S. E., Baker, A., Kia,

J., et al. (2001). Design, calibration and performance of MICROTOPS

II handheld ozone monitor and sun photometer. Journal of Geophysical

Research, 106-D13, 14573–14582.



K.D. Knobelspiesse et al. / Remote Sensing of Environment 93 (2004) 87–106106
Mueller, J. L., & Fargion, G. S. (2002a). Ocean Optics Protocols for

Satellite Ocean Color Sensor Validation, Revision 3, Volume I. NASA

Tech. Memo. 2002-210004/Rev3-Vol1, NASA Goddard Space Flight

Center, Greenbelt, MD.

Mueller, J. L., & Fargion, G. S. (2002b). Ocean Optics Protocols for Satellite

Ocean Color Sensor Validation, Revision 3, Volume II. NASA Tech.

Memo. 2002-210004/Rev3-Vol2, NASA Goddard Space Flight Center,

Greenbelt, MD.

Mueller, J. L., Fargion, G. S., & McClain, C. R. (2003a). Ocean Optics

Protocols For Satellite Ocean Color Sensor Validation, Revision 4,

Volume I. NASA Tech. Memo. 2003-21621/Rev-Vol1, NASA Goddard

Space Flight Center, Greenbelt, MD.

Mueller, J. L., Fargion, G. S., & McClain, C. R., (2003b). Ocean Optics

Protocols For Satellite Ocean Color Sensor Validation, Revision 4,

Volume II. NASA Tech. Memo. 2003-21621/Rev-Vol2, NASA Goddard

Space Flight Center, Greenbelt, MD.

Mueller, J. L., Fargion, G. S., & McClain, C. R. (2003c). Ocean Optics

Protocols For Satellite Ocean Color Sensor Validation, Revision 4,

Volume III. NASA Tech. Memo. 2003-21621/Rev-Vol3, NASA Goddard

Space Flight Center, Greenbelt, MD.

Nicolet, M. (1981). The solar spectral irradiance and its action in the

atmospheric photodissociation process. Planetary and Space Science,

29, 951–974.

O’Neill, N., & Royer, A. (1993). Extraction of biomodal aerosol-size

distribution radii from spectral and angular slope (Angstrom) coef-

ficients. Applied Optics, 32(9), 1642–1645.

O’Neill, N. T., Ignatov, A., Holben, B. N., & Eck, T. F. (2000). The

lognormal distribution as a reference for reporting aerosol optical depth

statistics; empirical tests using multi-year, multi-site AERONET

sunphotometer data. Geophysical Research Letters, 20, 3333–3336.

Porter, J. N., Miller, M., Pietras, C., & Motell, C. (2001). Ship-based sun

photometer measurements using microtops sun photometers. Journal of

atmospheric and oceanic technology, 18, 765–774.

Russell, P. B., Livingston, J. M., Dutton, E. G., Pueschel, R. F., Reagan,

J. A., DeFoor, T. E., et al. (1993). Pinatubo and Pre-Pinatubo optical-

depth spectra: Mauna Loa measurements, comparisons, inferred

particle size distributions, radiative effects and relationships to Lidar

data. Journal of Geophysical Research, 98(D12), 22969–22985.

Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., &

Ostrow, H. (1989). MODIS: Advanced facility instrument for studies of
the Earth as a system. IEEE Transactions on Geoscience and Remote

Sensing, 27, 145–152.

Schott, J. R. (1997). Remote sensing: The image chain approach

(pp. 52–62). New York7 Oxford University Press.

Shettle, E. P., & Fenn, R. W. (1979). Models for the aerosols of the lower

atmosphere and the effects of humidity variations on their optical

properties. AFGL Tech. Rep., AFGL-TR-79-0214.

Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovik, O., Eck, T. F., Slutsker,

I., et al. (2002). Optical properties of atmospheric aerosol in maritime

environments. Journal of the Atmospheric Sciences, 59, 501–523.

Smirnov, A., Holben, B. N., Dubovik, O., Frouin, R., Eck, T. F., & Slutsker, I.

(2003). Maritime component in aerosol optical models derived from

Aerosol Robotic Network data. Journal of Geophysical Research,

108(D1), 4033.

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of

statistics in biological research. (Third edition)San Francisco, CA7W.H.

Freeman and Company.

Vermeulen, A., Devaux, C., & Herman, M. (2000). Retrieval of the

scattering and microphysical properties of aerosols from ground-based

optical measurements including polarization: I. Method. Applied Optics,

39, 6207–6220.

Wang, M. (2000). The SeaWiFS atmospheric correction algorithm updates.

S. B. Hooker, & E. R. Firestone NASA Tech. Memo. 2000-206892,

SeaWiFS Post Launch Technical Report Series, vol. 9. (pp. 57–63).

Greenbelt, MD7 NASA Goddard Space Flight Center.

Wang, M., & Gordon, H. R. (1993). Retrieval of the columnar aerosol

phase function and single scattering albedo from sky radiance over the

ocean: Simulations. Applied Optics, 32, 4598–4609.

Wang, M., Bailey, S., & McClain, C. R. (2000). SeaWiFS Provides Unique

Global Aerosol Optical Property Data. Eos Transactions (pp. 197).

American Geophysical Union.

Werdell, P. J., & Bailey, S. W. (2002). The SeaWiFS Bio-Optical Archive

and Storage System (SeaBASS): Current Architecture and Implemen-

tation, NASA Tech. Memo. 2002-211617. NASA Goddard Space Flight

Center, Greenbelt, MD.

Zhang, T., & Gordon, H. R. (1997). Retrieval of elements of the columnar

aerosol scattering phase matrix from polarized sky radiance over the

ocean: Simulations. Applied Optics, 36, 7948–7959.


	Maritime aerosol optical thickness measured by handheld sun photometers
	Introduction
	Background
	Sun photometry
	Calibration
	Data collection, protocols
	Pointing error screening

	Uncertainty computation
	ngstrm exponent calculation

	Quality control

	Entire dataset analysis
	Binning
	Basic statistics
	Geographic data dependency

	Classification
	K-means classification
	Classification results and verification

	Surface data compared to SeaWiFS aerosol models
	Regional results
	Conclusions
	Acknowledgement
	ngstrm exponent computation
	Instrumental differences
	Diurnal stability
	References


